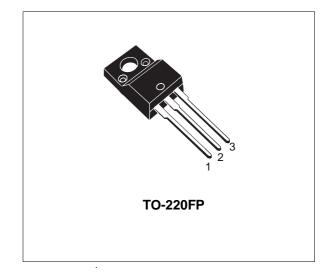
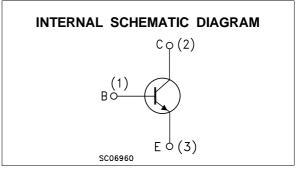


BUL1203EFP

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- HIGH VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED
- FULLY INSULATED PACKAGE (U.L. COMPLIANT) FOR EASY MOUNTING


APPLICATIONS


 ELECTRONIC BALLASTS FOR FLUORESCENT LIGHTING (277 V HALF BRIDGE AND 120 V PUSH-PULL TOPOLOGIES)

DESCRIPTION

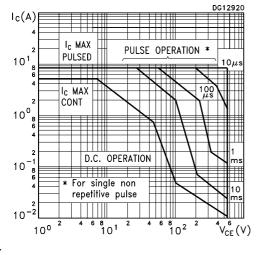
The BUL1203EFP is a new device manufactured using Diffused Collector technology to enhance switching speeds and tight h_{FE} range while maintaining a wide RBSOA.

Thanks to his structure it has an intrinsic ruggedness which enables the transistor to withstand a high collector current level during Breakdown condition, without using the transil protection usually necessary in typical converters for lamp ballast.

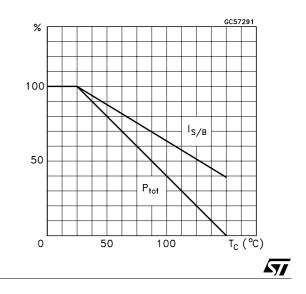
Symbol	Parameter	Value	Unit
V _{CBO}	Collector-BaseVoltage (I _E = 0)	1200	V
VCES	Collector-Emitter Voltage (V _{BE} = 0)	1200	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	550	V
V _{EBO}	Emitter-Base Voltage $(I_C = 0)$	9	V
lc	Collector Current	5	A
Ісм	Collector Peak Current (t _p < 5 ms)	8	Α
IB	Base Current	2	A
I _{BM}	Base Peak Current (t _p < 5 ms)	4	A
P _{tot}	Total Dissipation at $T_c = 25 \ ^{\circ}C$	36	W
Visol	Insulation Withstand Voltage (RMS) from All Three Leads to Exernal Heatsink	1500	V
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

ABSOLUTE MAXIMUM RATINGS

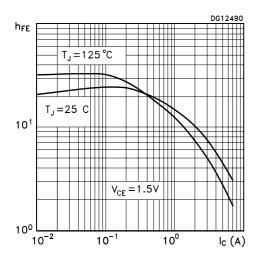
THERMAL DATA

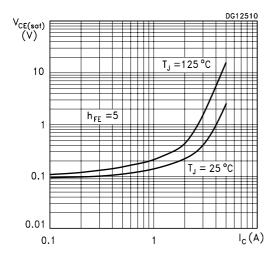

R _{thj-case}	Thermal Resistance Junction-case	Max	3.47	°C/W
$R_{thj-amb}$	Thermal Resistance Junction-ambient	Max	62.5	°C/W

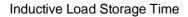
ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \, {}^{\circ}C$ unless otherwise specified)

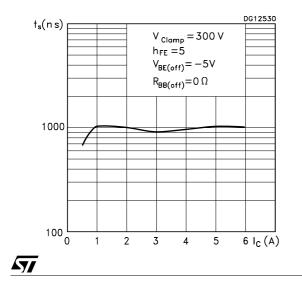

Symbol	Parameter	Test	Conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 1200 V				100	μA
ICEO	Collector Cut-off Current ($I_B = 0$)	V _{CE} = 550 V				100	μA
$V_{CEO(sus)^*}$	Collector-Emitter Sustaining Voltage (I _B = 0)	I _C = 100 mA	L = 25 mH	550			V
V_{EBO}	Emitter-Base Voltage (I _C = 0)	I _E = 10 mA		9			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	$I_{C} = 1 A$ $I_{C} = 2 A$ $I_{C} = 3 A$	$I_B = 0.2 A$ $I_B = 0.4 A$ $I_B = 1 A$			0.5 0.7 1.5	V V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 2 A I _C = 3 A	I _B = 0.4 A I _B = 1 A			1.5 1.5	V V
h _{FE} *	DC Current Gain	$I_{C} = 1 \text{ mA}$ $I_{C} = 10 \text{ mA}$ $I_{C} = 0.8 \text{ A}$ $I_{C} = 2 \text{ A}$	V _{CE} = 5 V V _{CE} = 5 V V _{CE} = 3 V V _{CE} = 5 V	10 10 14 9		32 28	
t _{on} t _s tf	RESISTIVE LOAD Turn-on Time Storage Time Fall Time	$I_{C} = 2 A$ $I_{B2} = -0.8 A$ $V_{CC} = 150 V$	$I_{B1} = 0.4 \text{ A}$ tp = 30 µs (see figure 2)		2.5 0.2	0.5 3.0 0.3	μs μs μs
Ear	Repetitive Avalanche Energy	L = 2 mH V _{CC} = 50 V (see figure 3)	C = 1.8 nF V _{BE} = -5 V	6			mJ

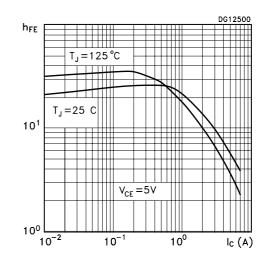
* Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

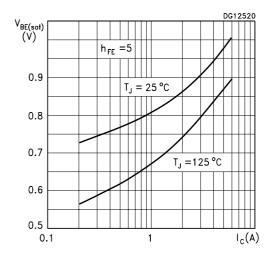

Safe Operating Area

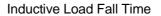

Derating Curve

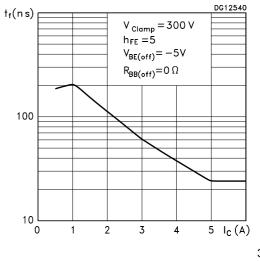



DC Current Gain


Collector-Emitter Saturation Voltage






DC Current Gain

Reverse Biased Safe Operating Area

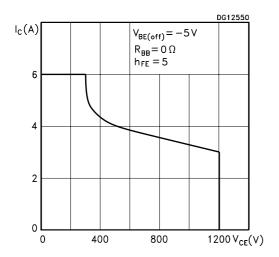


Figure 1: Inductive Load Switching Test Circuit

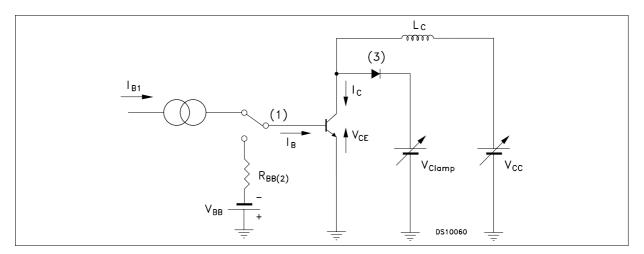
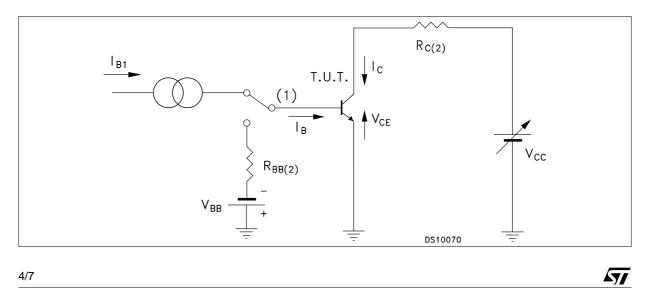
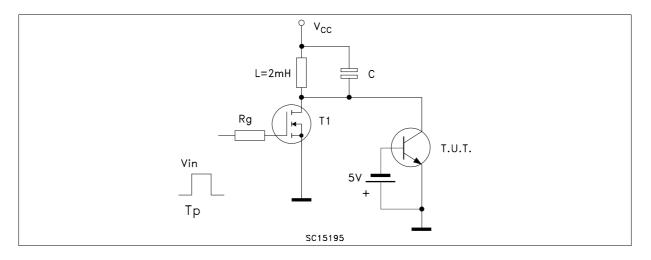




Figure 2: Resistive Load Switching Test Circuit

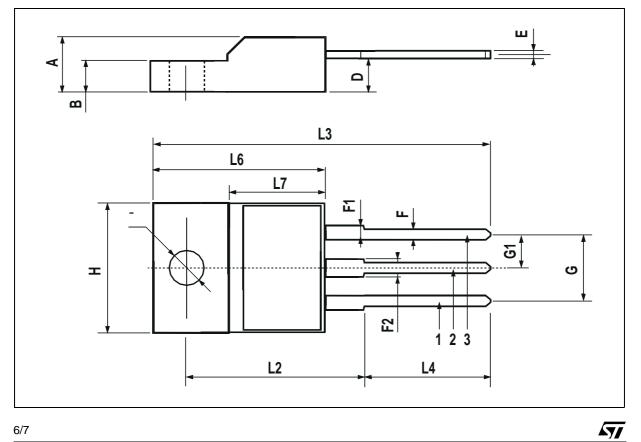


Figure 3: Energy Rating Test Circuit

DIM.		mm		inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.4		4.6	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
E	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
Н	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	0.385		0.417
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366

TO-220FP MECHANICAL DATA

6/7

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics.

All other names are the property of their respective owners.

© 2003 STMicroelectronics – All Rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

57